Реплікація даних
Реплікація даних	1
Оператори реплікації Replication Statements	1
SQL Statements for Controlling Source Servers	2
PURGE BINARY LOGS Statement	2
RESET MASTER Statement	3
SET sql_log_bin Statement	4
SQL Statements for Controlling Replica Servers	4
CHANGE MASTER TO Statement	4
CHANGE REPLICATION FILTER Statement	12
MASTER_POS_WAIT() Statement	14
RESET REPLICA | SLAVE Statement	14
RESET SLAVE | REPLICA Statement	16
START REPLICA | SLAVE Statement	16
START SLAVE | REPLICA Statement	19
STOP REPLICA | SLAVE Statement	20
STOP SLAVE | REPLICA Statement	21
Functions which Configure the Source List	21
SQL Statements for Controlling Group Replication	23
START GROUP_REPLICATION Statement	23
STOP GROUP_REPLICATION Statement	23
Function which Configures Group Replication Primary	24
Functions which Configure the Group Replication Mode	24
Functions to Inspect and Configure the Maximum Consensus Instances of a Group	25
Version	26

[bookmark: _Toc57749738]Реплікація даних

[bookmark: _Toc57749739]Оператори реплікації Replication Statements
MySQL replication is a process that allows you to easily maintain multiple copies of a MySQL data by having them copied automatically from a master to a slave database. ... For the process to work you will need two IP addresses: one of the master server and and one of the slave.
Replication enables you to maintain identical data on multiple servers. This has several benefits, such as enabling client query load to be distributed over servers, availability of data even if a given server is taken offline or fails, and the ability to make backups with no impact on the source by using a replica.
Replication can be controlled through the SQL interface using the statements described in this section. Statements are split into a group which controls source servers, a group which controls replica servers, and a group which can be applied to any replication servers.
[bookmark: _Toc57749740]SQL Statements for Controlling Source Servers
[bookmark: idm46251766991632][bookmark: idm46251766990144][bookmark: idm46251766988656]This section discusses statements for managing replication source servers. Section 13.4.2, “SQL Statements for Controlling Replica Servers”, discusses statements for managing replica servers.
In addition to the statements described here, the following SHOW statements are used with source servers in replication..
· SHOW BINARY LOGS
· SHOW BINLOG EVENTS
· SHOW MASTER STATUS
· SHOW REPLICAS | SHOW SLAVE HOSTS
[bookmark: _Toc57749741]PURGE BINARY LOGS Statement
[bookmark: idm46251766973872][bookmark: idm46251766972832]PURGE { BINARY | MASTER } LOGS {
 TO 'log_name'
 | BEFORE datetime_expr
}
The binary log is a set of files that contain information about data modifications made by the MySQL server. The log consists of a set of binary log files, plus an index file.
The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior to the specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are removed from the list recorded in the index file, so that the given log file becomes the first in the list.
PURGE BINARY LOGS requires the BINLOG_ADMIN privilege. This statement has no effect if the server was not started with the --log-bin option to enable binary logging.
Examples:
PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2019-04-02 22:46:26';
The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in 'YYYY-MM-DD hh:mm:ss' format).
This statement is safe to run while replicas are replicating. You need not stop them. If you have an active replica that currently is reading one of the log files you are trying to delete, this statement does not delete the log file that is in use or any log files later than that one, but it deletes any earlier log files. A warning message is issued in this situation. However, if a replica is not connected and you happen to purge one of the log files it has yet to read, the replica cannot replicate after it reconnects.
To safely purge binary log files, follow this procedure:
1. On each replica, use SHOW REPLICA | SLAVE STATUS to check which log file it is reading.
2. Obtain a listing of the binary log files on the source with SHOW BINARY LOGS.
3. Determine the earliest log file among all the replicas. This is the target file. If all the replicas are up to date, this is the last log file on the list.
4. Make a backup of all the log files you are about to delete. (This step is optional, but always advisable.)
5. Purge all log files up to but not including the target file.
PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE both fail with an error when binary log files listed in the .index file had been removed from the system by some other means (such as using rm on Linux). (Bug #18199, Bug #18453) To handle such errors, edit the .index file (which is a simple text file) manually to ensure that it lists only the binary log files that are actually present, then run again the PURGE BINARY LOGS statement that failed.
Binary log files are automatically removed after the server's binary log expiration period. Removal of the files can take place at startup and when the binary log is flushed. The default binary log expiration period is 30 days. You can specify an alternative expiration period using the binlog_expire_logs_seconds system variable. If you are using replication, you should specify an expiration period that is no lower than the maximum amount of time your replicas might lag behind the source.
[bookmark: _Toc57749742]RESET MASTER Statement
[bookmark: idm46251766933136]RESET MASTER [TO binary_log_file_index_number]
Warning
Use this statement with caution to ensure you do not lose any wanted binary log file data and GTID execution history.
RESET MASTER requires the RELOAD privilege.
For a server where binary logging is enabled (log_bin is ON), RESET MASTER deletes all existing binary log files and resets the binary log index file, resetting the server to its state before binary logging was started. A new empty binary log file is created so that binary logging can be restarted.
For a server where GTIDs are in use (gtid_mode is ON), issuing RESET MASTER resets the GTID execution history. The value of the gtid_purged system variable is set to an empty string (''), the global value (but not the session value) of the gtid_executed system variable is set to an empty string, and the mysql.gtid_executed table is cleared (see mysql.gtid_executed Table). If the GTID-enabled server has binary logging enabled, RESET MASTER also resets the binary log as described above. Note that RESET MASTER is the method to reset the GTID execution history even if the GTID-enabled server is a replica where binary logging is disabled; RESET REPLICA | SLAVE has no effect on the GTID execution history. For more information on resetting the GTID execution history, see Resetting the GTID Execution History.
Issuing RESET MASTER without the optional TO clause deletes all binary log files listed in the index file, resets the binary log index file to be empty, and creates a new binary log file starting at 1. Use the optional TO clause to start the binary log file index from a number other than 1 after the reset.
Using RESET MASTER with the TO clause to specify a binary log file index number to start from simplifies failover by providing a single statement alternative to the FLUSH BINARY LOGS and PURGE BINARY LOGS TO statements. Check that you are using a reasonable value for the index number. If you enter an incorrect value, you can correct this by issuing another RESET MASTER statement with or without the TO clause. If you do not correct a value that is out of range, the server cannot be restarted.
The following example demonstrates TO clause usage:
RESET MASTER TO 1234;

SHOW BINARY LOGS;
+-------------------+-----------+-----------+
| Log_name | File_size | Encrypted |
+-------------------+-----------+-----------+
| source-bin.001234 | 154 | No |
+-------------------+-----------+-----------+
Important
The effects of RESET MASTER without the TO clause differ from those of PURGE BINARY LOGS in 2 key ways:
1. RESET MASTER removes all binary log files that are listed in the index file, leaving only a single, empty binary log file with a numeric suffix of .000001, whereas the numbering is not reset by PURGE BINARY LOGS.
2. RESET MASTER is not intended to be used while any replicas are running. The behavior of RESET MASTER when used while replicas are running is undefined (and thus unsupported), whereas PURGE BINARY LOGS may be safely used while replicas are running.
See also Section 13.4.1.1, “PURGE BINARY LOGS Statement”.
RESET MASTER without the TO clause can prove useful when you first set up a source and replica, so that you can verify the setup as follows:
1. Start the source and replica, and start replication (see Section 17.1.2, “Setting Up Binary Log File Position Based Replication”).
2. Execute a few test queries on the source.
3. Check that the queries were replicated to the replica.
4. When replication is running correctly, issue STOP REPLICA | SLAVE followed by RESET REPLICA | SLAVE on the replica, then verify that no unwanted data from the test queries exists on the replica.
5. Issue RESET MASTER on the source to clean up the test queries.
After verifying the setup, resetting the source and replica and ensuring that no unwanted data or binary log files generated by testing remain on the source or replica, you can start the replica and begin replicating.
[bookmark: _Toc57749743]SET sql_log_bin Statement
[bookmark: idm46251766864784]SET sql_log_bin = {OFF|ON}
The sql_log_bin variable controls whether logging to the binary log is enabled for the current session (assuming that the binary log itself is enabled). The default value is ON. To disable or enable binary logging for the current session, set the session sql_log_bin variable to OFF or ON.
Set this variable to OFF for a session to temporarily disable binary logging while making changes to the source that you do not want replicated to the replica.
Setting the session value of this system variable is a restricted operation. The session user must have privileges sufficient to set restricted session variables. See Section 5.1.9.1, “System Variable Privileges”.
It is not possible to set the session value of sql_log_bin within a transaction or subquery.
Setting this variable to OFF prevents new GTIDs from being assigned to transactions in the binary log. If you are using GTIDs for replication, this means that even when binary logging is later enabled again, the GTIDs written into the log from this point do not account for any transactions that occurred in the meantime, so in effect those transactions are lost.
mysqldump adds a SET @@SESSION.sql_log_bin=0 statement to a dump file from a server where GTIDs are in use, which disables binary logging while the dump file is being reloaded. The statement prevents new GTIDs from being generated and assigned to the transactions in the dump file as they are executed, so that the original GTIDs for the transactions are used.
[bookmark: _Toc57749744]SQL Statements for Controlling Replica Servers
[bookmark: idm46251766844144][bookmark: idm46251766842656][bookmark: idm46251766841168]
[bookmark: _Toc57749745]CHANGE MASTER TO Statement
[bookmark: idm46251766832976]CHANGE MASTER TO option [, option] ... [channel_option]

option: {
 MASTER_BIND = 'interface_name'
 | MASTER_HOST = 'host_name'
 | MASTER_USER = 'user_name'
 | MASTER_PASSWORD = 'password'
 | MASTER_PORT = port_num
 | PRIVILEGE_CHECKS_USER = {'account' | NULL}
 | REQUIRE_ROW_FORMAT = {0|1}
 | REQUIRE_TABLE_PRIMARY_KEY_CHECK = {STREAM | ON | OFF}
 | MASTER_LOG_FILE = 'source_log_name'
 | MASTER_LOG_POS = source_log_pos
 | MASTER_AUTO_POSITION = {0|1}
 | RELAY_LOG_FILE = 'relay_log_name'
 | RELAY_LOG_POS = relay_log_pos
 | MASTER_HEARTBEAT_PERIOD = interval
 | MASTER_CONNECT_RETRY = interval
 | MASTER_RETRY_COUNT = count
 | SOURCE_CONNECTION_AUTO_FAILOVER = {0|1}
 | MASTER_DELAY = interval
 | MASTER_COMPRESSION_ALGORITHMS = 'value'
 | MASTER_ZSTD_COMPRESSION_LEVEL = level
 | MASTER_SSL = {0|1}
 | MASTER_SSL_CA = 'ca_file_name'
 | MASTER_SSL_CAPATH = 'ca_directory_name'
 | MASTER_SSL_CERT = 'cert_file_name'
 | MASTER_SSL_CRL = 'crl_file_name'
 | MASTER_SSL_CRLPATH = 'crl_directory_name'
 | MASTER_SSL_KEY = 'key_file_name'
 | MASTER_SSL_CIPHER = 'cipher_list'
 | MASTER_SSL_VERIFY_SERVER_CERT = {0|1}
 | MASTER_TLS_VERSION = 'protocol_list'
 | MASTER_TLS_CIPHERSUITES = 'ciphersuite_list'
 | MASTER_PUBLIC_KEY_PATH = 'key_file_name'
 | GET_MASTER_PUBLIC_KEY = {0|1}
 | NETWORK_NAMESPACE = 'namespace'
 | IGNORE_SERVER_IDS = (server_id_list)
}

channel_option:
 FOR CHANNEL channel

server_id_list:
 [server_id [, server_id] ...]
CHANGE MASTER TO changes the parameters that the replica server uses for connecting to the source, for reading the source's binary log, and reading the replica's relay log. It also updates the contents of the replication metadata repositories (see Section 17.2.4, “Relay Log and Replication Metadata Repositories”). CHANGE MASTER TO requires the REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER privilege).
You can issue CHANGE MASTER TO statements on a running replica without first stopping it, depending on the states of the replication SQL thread and replication I/O thread. The rules governing such use are provided later in this section.
When using a multithreaded replica (in other words slave_parallel_workers is greater than 0), stopping the replica can cause “gaps” in the sequence of transactions that have been executed from the relay log, regardless of whether the replica was stopped intentionally or otherwise. When such gaps exist, issuing CHANGE MASTER TO fails. The solution in this situation is to issue START REPLICA | SLAVE UNTIL SQL_AFTER_MTS_GAPS which ensures that the gaps are closed.
The optional FOR CHANNEL channel clause enables you to name which replication channel the statement applies to. Providing a FOR CHANNEL channel clause applies the CHANGE MASTER TO statement to a specific replication channel, and is used to add a new channel or modify an existing channel. For example, to add a new channel called channel2:
CHANGE MASTER TO MASTER_HOST=host1, MASTER_PORT=3002 FOR CHANNEL 'channel2'
If no clause is named and no extra channels exist, the statement applies to the default channel.
When using multiple replication channels, if a CHANGE MASTER TO statement does not name a channel using a FOR CHANNEL channel clause, an error occurs. See Section 17.2.2, “Replication Channels” for more information.
Options not specified retain their value, except as indicated in the following discussion. Thus, in most cases, there is no need to specify options that do not change.
MASTER_HOST, MASTER_USER, MASTER_PASSWORD, MASTER_PORT, and NETWORK_NAMESPACE provide information to the replica about how to connect to its source:
· MASTER_HOST and MASTER_PORT are the host name (or IP address) of the source server and its TCP/IP port.
Note
Replication cannot use Unix socket files. You must be able to connect to the source MySQL server using TCP/IP.
If you specify the MASTER_HOST or MASTER_PORT option, the replica assumes that the source server is different from before (even if the option value is the same as its current value.) In this case, the old values for the source's binary log file name and position are considered no longer applicable, so if you do not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement, MASTER_LOG_FILE='' and MASTER_LOG_POS=4 are silently appended to it.
Setting MASTER_HOST='' (that is, setting its value explicitly to an empty string) is not the same as not setting MASTER_HOST at all. Trying to set MASTER_HOST to an empty string fails with an error.
Values used for MASTER_HOST and other CHANGE MASTER TO options are checked for linefeed (\n or 0x0A) characters; the presence of such characters in these values causes the statement to fail with ER_MASTER_INFO. (Bug #11758581, Bug #50801)
· MASTER_USER and MASTER_PASSWORD are the user name and password of the replication user account to use for connecting to the source. If you specify MASTER_PASSWORD, MASTER_USER is also required. The password used for a replication user account in a CHANGE MASTER TO statement is limited to 32 characters in length; trying to use a password of more than 32 characters causes CHANGE MASTER TO to fail.
It is possible to set an empty user name by specifying MASTER_USER='', but the replication channel cannot be started with an empty user name. In releases before MySQL 8.0.21, only set an empty MASTER_USER user name if you need to clear previously used credentials from the replication metadata repositories for security purposes. Do not use the channel afterwards, due to a bug in these releases that can substitute a default user name if an empty user name is read from the repositories (for example, during an automatic restart of a Group Replication channel). From MySQL 8.0.21, it is valid to set an empty MASTER_USER user name and use the channel afterwards if you always provide user credentials using the START REPLICA | SLAVE statement or START GROUP_REPLICATION statement that starts the replication channel. This approach means that the replication channel always needs operator intervention to restart, but the user credentials are not recorded in the replication metadata repositories.
The text of a running CHANGE MASTER TO statement, including values for MASTER_USER and MASTER_PASSWORD, can be seen in the output of a concurrent SHOW PROCESSLIST statement. (The complete text of a START REPLICA | SLAVE statement is also visible to SHOW PROCESSLIST.)
· NETWORK_NAMESPACE specifies the network namespace to use for TCP/IP connections to the source. If this option is omitted, connections from the replica use the default (global) namespace.
For information about network namespaces, see Section 5.1.14, “Network Namespace Support”.
This option was added in MySQL 8.0.22. On platforms that do not implement network namespace support, failure occurs when the replica attempts to connect to the source.
REQUIRE_ROW_FORMAT (available as of MySQL 8.0.19) permits only row-based replication events to be processed by the replication channel. This option prevents the replication applier from taking actions such as creating temporary tables and executing LOAD DATA INFILE requests, which increases the security of the channel. Group Replication channels are automatically created with REQUIRE_ROW_FORMAT set, and you cannot change the option for those channels. For more information, see Section 17.3.3, “Replication Privilege Checks”.
PRIVILEGE_CHECKS_USER (available as of MySQL 8.0.18) names a user account that supplies a security context for the specified channel. NULL, which is the default, means no security context is used. The use of row-based binary logging is strongly recommended when PRIVILEGE_CHECKS_USER is set, and you can set REQUIRE_ROW_FORMAT to enforce this. For example, to start privilege checks on the channel channel_1 on a running replica, issue the following statements:
mysql> STOP REPLICA | SLAVE FOR CHANNEL 'channel_1';
mysql> CHANGE MASTER TO
 PRIVILEGE_CHECKS_USER = 'priv_repl'@'%.example.com',
 REQUIRE_ROW_FORMAT = 1,
 FOR CHANNEL 'channel_1';
mysql> START REPLICA | SLAVE FOR CHANNEL 'channel_1';
The user name and host name for the user account must follow the syntax described in “Specifying Account Names”, and the user must not be an anonymous user (with a blank user name) or the CURRENT_USER. The account must have the REPLICATION_APPLIER privilege, plus the required privileges to execute the transactions replicated on the channel. When you restart the replication channel, the privilege checks are applied from that point on. If you do not specify a channel and no other channels exist, the statement is applied to the default channel.
REQUIRE_TABLE_PRIMARY_KEY_CHECK (available as of MySQL 8.0.20) enables a replica to select its own policy for primary key checks. When the option is set to ON for a replication channel, the replica always uses the value ON for the sql_require_primary_key system variable in replication operations, requiring a primary key. When the option is set to OFF, the replica always uses the value OFF for the sql_require_primary_key system variable in replication operations, so that a primary key is never required, even if the source required one. When the REQUIRE_TABLE_PRIMARY_KEY_CHECK option is set to STREAM, which is the default, the replica uses whatever value is replicated from the source for each transaction.
· For multisource replication, setting REQUIRE_TABLE_PRIMARY_KEY_CHECK to ON or OFF enables a replica to normalize behavior across the replication channels for different sources, and keep a consistent setting for the sql_require_primary_key system variable. Using ON safeguards against the accidental loss of primary keys when multiple sources update the same set of tables. Using OFF allows sources that can manipulate primary keys to work alongside sources that cannot.
· When PRIVILEGE_CHECKS_USER is set, setting REQUIRE_TABLE_PRIMARY_KEY_CHECK to ON or OFF means that the user account does not need session administration level privileges to set restricted session variables, which are required to change the value of sql_require_primary_key to match the source's setting for each transaction. For more information, see Section 17.3.3, “Replication Privilege Checks”.
MASTER_COMPRESSION_ALGORITHMS and MASTER_ZSTD_COMPRESSION_LEVEL (available as of MySQL 8.0.18) enable control over the use of compression for connections to the source:
· MASTER_COMPRESSION_ALGORITHMS specifies the permitted compression algorithms. The available algorithms are the same as for the protocol_compression_algorithms system variable. The default value is uncompressed.
The value of MASTER_COMPRESSION_ALGORITHMS applies only if the slave_compressed_protocol system variable is disabled. If slave_compressed_protocol is enabled, it takes precedence over MASTER_COMPRESSION_ALGORITHMS and connections to the source use zlib compression if both source and replica support that algorithm.
· MASTER_ZSTD_COMPRESSION_LEVEL is the compression level to use for connections that use the zstd compression algorithm. The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression. The default zstd compression level is 3. The compression level setting has no effect on connections that do not use zstd compression.
Binary log transaction compression (available as of MySQL 8.0.20), which is activated by the binlog_transaction_compression system variable, can also be used to save bandwidth. If you do this in combination with connection compression, connection compression has less opportunity to act on the data, but can still compress headers and those events and transaction payloads that are uncompressed.
The MASTER_SSL_xxx options and the MASTER_TLS_xxx options specify how the replica uses encryption and ciphers to secure the replication connection. These options can be changed even on replicas that are compiled without SSL support. They are saved to the source metadata repository, but are ignored if the replica does not have SSL support enabled. The MASTER_SSL_xxx and MASTER_TLS_xxx options perform the same functions as the --ssl-xxx and --tls-xxx client options described in Command Options for Encrypted Connections.
Important
To connect to the source using a replication user account that authenticates with the caching_sha2_password plugin, you must either set up a secure connection as described in “Setting Up Replication to Use Encrypted Connections”, or enable the unencrypted connection to support password exchange using an RSA key pair. The caching_sha2_password authentication plugin is the default for new users created from MySQL 8.0 If the user account that you create or use for replication (as specified by the MASTER_USER option) uses this authentication plugin, and you are not using a secure connection, you must enable RSA key pair-based password exchange for a successful connection.
To enable RSA key pair-based password exchange, specify either the MASTER_PUBLIC_KEY_PATH or the GET_MASTER_PUBLIC_KEY=1 option. Either of these options provides the RSA public key to the replica:
· MASTER_PUBLIC_KEY_PATH indicates the path name to a file containing a replica-side copy of the public key required by the source for RSA key pair-based password exchange. The file must be in PEM format. This option applies to replicas that authenticate with the sha256_password or caching_sha2_password authentication plugin. (For sha256_password, MASTER_PUBLIC_KEY_PATH can be used only if MySQL was built using OpenSSL.)
· GET_MASTER_PUBLIC_KEY indicates whether to request from the source the public key required for RSA key pair-based password exchange. This option applies to replicas that authenticate with the caching_sha2_password authentication plugin. For connections by accounts that authenticate using this plugin, the source does not send the public key unless requested, so it must be requested or specified in the client. If MASTER_PUBLIC_KEY_PATH is given and specifies a valid public key file, it takes precedence over GET_MASTER_PUBLIC_KEY.
The MASTER_HEARTBEAT_PERIOD, MASTER_CONNECT_RETRY, MASTER_RETRY_COUNT , and (from MySQL 8.0.22) SOURCE_CONNECTION_AUTO_FAILOVER options control how the replica recognizes that the connection to the source has been lost and makes attempts to reconnect.
· The slave_net_timeout system variable specifies the number of seconds that the replica waits for either more data or a heartbeat signal from the source, before the replica considers the connection broken, aborts the read, and tries to reconnect. The default value is 60 seconds (one minute).
· The heartbeat interval, which stops the connection timeout occurring in the absence of data if the connection is still good, is controlled by the MASTER_HEARTBEAT_PERIOD option. A heartbeat signal is sent to the replica after that number of seconds, and the waiting period is reset whenever the source's binary log is updated with an event. Heartbeats are therefore sent by the source only if there are no unsent events in the binary log file for a period longer than this. The heartbeat interval interval is a decimal value having the range 0 to 4294967 seconds and a resolution in milliseconds; the smallest nonzero value is 0.001. Setting interval to 0 disables heartbeats altogether. The heartbeat interval defaults to half the value of the slave_net_timeout system variable. It is recorded in the source metadata repository and shown in the replication_connection_configuration Performance Schema table. Issuing RESET REPLICA | SLAVE resets the heartbeat interval to the default value.
Note that a change to the value or default setting of slave_net_timeout does not automatically change the heartbeat interval, whether that has been set explicitly or is using a previously calculated default. A warning is issued if you set @@GLOBAL.slave_net_timeout to a value less than that of the current heartbeat interval. If slave_net_timeout is changed, you must also issue CHANGE MASTER TO to adjust the heartbeat interval to an appropriate value so that the heartbeat signal occurs before the connection timeout. If you do not do this, the heartbeat signal has no effect, and if no data is received from the source, the replica can make repeated reconnection attempts, creating zombie dump threads.
· If the replica does need to reconnect, the first retry occurs immediately after the timeout. MASTER_CONNECT_RETRY specifies the interval between reconnection attempts, and MASTER_RETRY_COUNT limits the number of reconnection attempts. If both the default settings are used, the replica waits 60 seconds between reconnection attempts (MASTER_CONNECT_RETRY=60), and keeps attempting to reconnect at this rate for 60 days (MASTER_RETRY_COUNT=86400). These values are recorded in the source metadata repository and shown in the replication_connection_configuration Performance Schema table. MASTER_RETRY_COUNT supersedes the --master-retry-count server startup option.
· From MySQL 8.0.22, you can set the SOURCE_CONNECTION_AUTO_FAILOVER option to activate the asynchronous connection failover mechanism for a replication channel if one or more alternative replication source servers are available (so when there are multiple MySQL servers or groups of servers that share the replicated data). The asynchronous connection failover mechanism takes over after the reconnection attempts controlled by MASTER_CONNECT_RETRY and MASTER_RETRY_COUNT are exhausted. It reconnects the replica to an alternative source chosen from a specified source list, which you manage using the asynchronous_connection_failover_add_source and asynchronous_connection_failover_delete_source UDFs..
Important
1. You can only set SOURCE_CONNECTION_AUTO_FAILOVER = 1 when GTID auto-positioning is in use (MASTER_AUTO_POSITION = 1).
2. When you set SOURCE_CONNECTION_AUTO_FAILOVER = 1, set MASTER_RETRY_COUNT to a minimal number that just allows a few retry attempts with the same source, in case the connection failure is caused by a transient network outage. Otherwise the asynchronous connection failover mechanism cannot be activated promptly.
3. When you set SOURCE_CONNECTION_AUTO_FAILOVER = 1, the replication metadata repositories must contain the credentials for a replication user account that can be used to connect to all the servers on the source list for the replication channel. These credentials can be set using the CHANGE MASTER TO statement with the MASTER_USER and MASTER_PASSWORD options..
MASTER_DELAY specifies how many seconds behind the source the replica must lag. An event received from the source is not executed until at least interval seconds later than its execution on the source. The default is 0. An error occurs if interval is not a nonnegative integer in the range from 0 to 231−1.. A CHANGE MASTER TO statement employing the MASTER_DELAY option can be executed on a running replica when the replication SQL thread is stopped.
MASTER_BIND is for use on replicas that have multiple network interfaces, and determines which of the replica's network interfaces is chosen for connecting to the source. The address configured with this option, if any, can be seen in the Master_Bind column of the output from SHOW REPLICA | SLAVE STATUS. In the source metadata repository table mysql.slave_master_info, the value can be seen as the Master_bind column. The ability to bind a replica to a specific network interface is also supported by NDB Cluster.
MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the replication I/O thread should begin reading from the source the next time the thread starts. RELAY_LOG_FILE and RELAY_LOG_POS are the coordinates at which the replication SQL thread should begin reading from the relay log the next time the thread starts. If you specify either of MASTER_LOG_FILE or MASTER_LOG_POS, you cannot specify RELAY_LOG_FILE or RELAY_LOG_POS. If you specify either of MASTER_LOG_FILE or MASTER_LOG_POS, you also cannot specify MASTER_AUTO_POSITION = 1 (described later in this section). If neither of MASTER_LOG_FILE or MASTER_LOG_POS is specified, the replica uses the last coordinates of the replication SQL thread before CHANGE MASTER TO was issued. This ensures that there is no discontinuity in replication, even if the replication SQL thread was late compared to the replication I/O thread, when you merely want to change, say, the password to use.
RELAY_LOG_FILE can use either an absolute or relative path, and uses the same base name as MASTER_LOG_FILE. A CHANGE MASTER TO statement employing RELAY_LOG_FILE, RELAY_LOG_POS, or both options can be executed on a running replica when the replication SQL thread is stopped. Relay logs are preserved if at least one of the replication SQL thread and the replication I/O thread is running. If both threads are stopped, all relay log files are deleted unless at least one of RELAY_LOG_FILE or RELAY_LOG_POS is specified. Note that the Group Replication applier channel (group_replication_applier) has no I/O thread, only an SQL thread. For this channel, the relay logs are not preserved when the SQL thread is stopped.
When MASTER_AUTO_POSITION = 1 is used with CHANGE MASTER TO, the replica attempts to connect to the source using the GTID-based replication protocol. This option can be used with CHANGE MASTER TO only if both the replication SQL thread and replication I/O thread are stopped. Both the replica and the source must have GTIDs enabled (GTID_MODE=ON, ON_PERMISSIVE, or OFF_PERMISSIVE on the replica, and GTID_MODE=ON on the source). Auto-positioning is used for the connection, so the coordinates represented by MASTER_LOG_FILE and MASTER_LOG_POS are not used, and the use of either or both of these options together with MASTER_AUTO_POSITION = 1 causes an error. If multi-source replication is enabled on the replica, you need to set the MASTER_AUTO_POSITION = 1 option for each applicable replication channel.
With MASTER_AUTO_POSITION = 1 set, in the initial connection handshake, the replica sends a GTID set containing the transactions that it has already received, committed, or both. The source responds by sending all transactions recorded in its binary log whose GTID is not included in the GTID set sent by the replica. This exchange ensures that the source only sends the transactions with a GTID that the replica has not already recorded or committed. If the replica receives transactions from more than one source, as in the case of a diamond topology, the auto-skip function ensures that the transactions are not applied twice..
If any of the transactions that should be sent by the source have been purged from the source's binary log, or added to the set of GTIDs in the gtid_purged system variable by another method, the source sends the error ER_MASTER_HAS_PURGED_REQUIRED_GTIDS to the replica, and replication does not start. The GTIDs of the missing purged transactions are identified and listed in the source's error log in the warning message ER_FOUND_MISSING_GTIDS. Also, if during the exchange of transactions it is found that the replica has recorded or committed transactions with the source's UUID in the GTID, but the source itself has not committed them, the source sends the error ER_SLAVE_HAS_MORE_GTIDS_THAN_MASTER to the replica and replication does not start.
You can see whether replication is running with auto-positioning enabled by checking the Performance Schema replication_connection_status table or the output of SHOW REPLICA | SLAVE STATUS. Disabling the MASTER_AUTO_POSITION option again makes the replica revert to file-based replication, in which case you must also specify one or both of the MASTER_LOG_FILE or MASTER_LOG_POS options.
IGNORE_SERVER_IDS takes a comma-separated list of 0 or more server IDs. Events originating from the corresponding servers are ignored, with the exception of log rotation and deletion events, which are still recorded in the relay log.
In circular replication, the originating server normally acts as the terminator of its own events, so that they are not applied more than once. Thus, this option is useful in circular replication when one of the servers in the circle is removed. Suppose that you have a circular replication setup with 4 servers, having server IDs 1, 2, 3, and 4, and server 3 fails. When bridging the gap by starting replication from server 2 to server 4, you can include IGNORE_SERVER_IDS = (3) in the CHANGE MASTER TO statement that you issue on server 4 to tell it to use server 2 as its source instead of server 3. Doing so causes it to ignore and not to propagate any statements that originated with the server that is no longer in use.
If IGNORE_SERVER_IDS contains the server's own ID and the server was started with the --replicate-same-server-id option enabled, an error results.
Note
When global transaction identifiers (GTIDs) are used for replication, transactions that have already been applied are automatically ignored, so the IGNORE_SERVER_IDS function is not required and is deprecated. If gtid_mode=ON is set for the server, a deprecation warning is issued if you include the IGNORE_SERVER_IDS option in a CHANGE MASTER TO statement.
The source metadata repository and the output of SHOW REPLICA | SLAVE STATUS provide the list of servers that are currently ignored.
If a CHANGE MASTER TO statement is issued without any IGNORE_SERVER_IDS option, any existing list is preserved. To clear the list of ignored servers, it is necessary to use the option with an empty list:
CHANGE MASTER TO IGNORE_SERVER_IDS = ();
RESET REPLICA | SLAVE ALL clears IGNORE_SERVER_IDS.
Note
A deprecation warning is issued if SET GTID_MODE=ON is issued when any channel has existing server IDs set with IGNORE_SERVER_IDS. Before starting GTID-based replication, check for and clear all ignored server ID lists on the servers involved. The SHOW REPLICA | SLAVE STATUS statement displays the list of ignored IDs, if there is one. If you do receive the deprecation warning, you can still clear a list after gtid_mode=ON is set by issuing a CHANGE MASTER TO statement containing the IGNORE_SERVER_IDS option with an empty list.
Invoking CHANGE MASTER TO causes the previous values for MASTER_HOST, MASTER_PORT, MASTER_LOG_FILE, and MASTER_LOG_POS to be written to the error log, along with other information about the replica's state prior to execution.
CHANGE MASTER TO causes an implicit commit of an ongoing transaction.
From MySQL 5.7, the strict requirement to execute STOP REPLICA | SLAVE prior to issuing any CHANGE MASTER TO statement (and START REPLICA | SLAVE afterward) is removed. Instead of depending on whether the replica is stopped, the behavior of CHANGE MASTER TO depends on the states of the replication SQL thread and replication I/O thread; which of these threads is stopped or running now determines the options that can or cannot be used with a CHANGE MASTER TO statement at a given point in time. The rules for making this determination are listed here:
· If the SQL thread is stopped, you can execute CHANGE MASTER TO using any combination that is otherwise allowed of RELAY_LOG_FILE, RELAY_LOG_POS, and MASTER_DELAY options, even if the replication I/O thread is running. No other options may be used with this statement when the I/O thread is running.
· If the I/O thread is stopped, you can execute CHANGE MASTER TO using any of the options for this statement (in any allowed combination) except RELAY_LOG_FILE, RELAY_LOG_POS, MASTER_DELAY, or MASTER_AUTO_POSITION = 1 even when the SQL thread is running.
· Both the SQL thread and the I/O thread must be stopped before issuing a CHANGE MASTER TO statement that employs MASTER_AUTO_POSITION = 1.
You can check the current state of the replication SQL thread and replication I/O thread using SHOW REPLICA | SLAVE STATUS. Note that the Group Replication applier channel (group_replication_applier) has no I/O thread, only an SQL thread.
If you are using statement-based replication and temporary tables, it is possible for a CHANGE MASTER TO statement following a STOP REPLICA | SLAVE statement to leave behind temporary tables on the replica. A warning (ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO) is now issued whenever this occurs. You can avoid this in such cases by making sure that the value of the Slave_open_temp_tables system status variable is equal to 0 prior to executing such a CHANGE MASTER TO statement.
CHANGE MASTER TO is useful for setting up a replica when you have the snapshot of the source and have recorded the source's binary log coordinates corresponding to the time of the snapshot. After loading the snapshot into the replica to synchronize it with the source, you can run CHANGE MASTER TO MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the replica to specify the coordinates at which the replica should begin reading the source's binary log.
The following example changes the source server the replica uses and establishes the source's binary log coordinates from which the replica begins reading. This is used when you want to set up the replica to replicate the source:
CHANGE MASTER TO
 MASTER_HOST='source2.example.com',
 MASTER_USER='replication',
 MASTER_PASSWORD='password',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='source2-bin.001',
 MASTER_LOG_POS=4,
 MASTER_CONNECT_RETRY=10;
The next example shows an operation that is less frequently employed. It is used when the replica has relay log files that you want it to execute again for some reason. To do this, the source need not be reachable. You need only use CHANGE MASTER TO and start the SQL thread (START REPLICA | SLAVE SQL_THREAD):
CHANGE MASTER TO
 RELAY_LOG_FILE='replica-relay-bin.006',
 RELAY_LOG_POS=4025;
The following table shows the maximum permissible length for the string-valued options.
	Option
	Maximum Length

	MASTER_HOST
	255 (60 prior to MySQL 8.0.17)

	MASTER_USER
	96

	MASTER_PASSWORD
	32

	MASTER_LOG_FILE
	511

	RELAY_LOG_FILE
	511

	MASTER_SSL_CA
	511

	MASTER_SSL_CAPATH
	511

	MASTER_SSL_CERT
	511

	MASTER_SSL_CRL
	511

	MASTER_SSL_CRLPATH
	511

	MASTER_SSL_KEY
	511

	MASTER_SSL_CIPHER
	511

	MASTER_TLS_VERSION
	511

	MASTER_TLS_CIPHERSUITES
	4000

	MASTER_PUBLIC_KEY_PATH
	511

	MASTER_COMPRESSION_ALGORITHMS
	99

	NETWORK_NAMESPACE
	64

[bookmark: _Toc57749746]CHANGE REPLICATION FILTER Statement
[bookmark: idm46251766445568]CHANGE REPLICATION FILTER filter[, filter]
	[, ...] [FOR CHANNEL channel]

filter: {
 REPLICATE_DO_DB = (db_list)
 | REPLICATE_IGNORE_DB = (db_list)
 | REPLICATE_DO_TABLE = (tbl_list)
 | REPLICATE_IGNORE_TABLE = (tbl_list)
 | REPLICATE_WILD_DO_TABLE = (wild_tbl_list)
 | REPLICATE_WILD_IGNORE_TABLE = (wild_tbl_list)
 | REPLICATE_REWRITE_DB = (db_pair_list)
}

db_list:
 db_name[, db_name][, ...]

tbl_list:
 db_name.table_name[, db_name.table_name][, ...]
wild_tbl_list:
 'db_pattern.table_pattern'[, 'db_pattern.table_pattern'][, ...]

db_pair_list:
 (db_pair)[, (db_pair)][, ...]

db_pair:
 from_db, to_db
CHANGE REPLICATION FILTER sets one or more replication filtering rules on the replica in the same way as starting the replica mysqld with replication filtering options such as --replicate-do-db or --replicate-wild-ignore-table. Unlike the case with the server options, this statement does not require restarting the server to take effect, only that the replication SQL thread be stopped using STOP REPLICA | SLAVE SQL_THREAD first (and restarted with START REPLICA | SLAVE SQL_THREAD afterwards). CHANGE REPLICATION FILTER requires the REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER privilege). Use the FOR CHANNEL channel clause to make a replication filter specific to a replication channel, for example on a multi-source replica. Filters applied without a specific FOR CHANNEL clause are considered global filters, meaning that they are applied to all replication channels.
Note
Global replication filters cannot be set on a MySQL server instance that is configured for Group Replication, because filtering transactions on some servers would make the group unable to reach agreement on a consistent state. Channel specific replication filters can be set on replication channels that are not directly involved with Group Replication, such as where a group member also acts as a replica to a source that is outside the group. They cannot be set on the group_replication_applier or group_replication_recovery channels.
The following list shows the CHANGE REPLICATION FILTER options and how they relate to --replicate-* server options:
· REPLICATE_DO_DB: Include updates based on database name. Equivalent to --replicate-do-db.
· REPLICATE_IGNORE_DB: Exclude updates based on database name. Equivalent to --replicate-ignore-db.
· REPLICATE_DO_TABLE: Include updates based on table name. Equivalent to --replicate-do-table.
· REPLICATE_IGNORE_TABLE: Exclude updates based on table name. Equivalent to --replicate-ignore-table.
· REPLICATE_WILD_DO_TABLE: Include updates based on wildcard pattern matching table name. Equivalent to --replicate-wild-do-table.
· REPLICATE_WILD_IGNORE_TABLE: Exclude updates based on wildcard pattern matching table name. Equivalent to --replicate-wild-ignore-table.
· REPLICATE_REWRITE_DB: Perform updates on replica after substituting new name on replica for specified database on source. Equivalent to --replicate-rewrite-db.
The precise effects of REPLICATE_DO_DB and REPLICATE_IGNORE_DB filters are dependent on whether statement-based or row-based replication is in effect.
Multiple replication filtering rules can be created in a single CHANGE REPLICATION FILTER statement by separating the rules with commas, as shown here:
CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (d1), REPLICATE_IGNORE_DB = (d2);
Issuing the statement just shown is equivalent to starting the replica mysqld with the options --replicate-do-db=d1 --replicate-ignore-db=d2.
On a multi-source replica, which uses multiple replication channels to process transaction from different sources, use the FOR CHANNEL channel clause to set a replication filter on a replication channel:
CHANGE REPLICATION FILTER REPLICATE_DO_DB = (d1) FOR CHANNEL channel_1;
This enables you to create a channel specific replication filter to filter out selected data from a source. When a FOR CHANNEL clause is provided, the replication filter statement acts on that replication channel, removing any existing replication filter which has the same filter type as the specified replication filters, and replacing them with the specified filter. Filter types not explicitly listed in the statement are not modified. If issued against a replication channel which is not configured, the statement fails with an ER_SLAVE_CONFIGURATION error. If issued against Group Replication channels, the statement fails with an ER_SLAVE_CHANNEL_OPERATION_NOT_ALLOWED error.
On a replica with multiple replication channels configured, issuing CHANGE REPLICATION FILTER with no FOR CHANNEL clause configures the replication filter for every configured replication channel, and for the global replication filters. For every filter type, if the filter type is listed in the statement, then any existing filter rules of that type are replaced by the filter rules specified in the most recently issued statement, otherwise the old value of the filter type is retained.
If the same filtering rule is specified multiple times, only the last such rule is actually used. For example, the two statements shown here have exactly the same effect, because the first REPLICATE_DO_DB rule in the first statement is ignored:
CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db1, db2), REPLICATE_DO_DB = (db3, db4);

CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (db3, db4);
Caution
This behavior differs from that of the --replicate-* filter options where specifying the same option multiple times causes the creation of multiple filter rules.
Names of tables and database not containing any special characters need not be quoted. Values used with REPLICATION_WILD_TABLE and REPLICATION_WILD_IGNORE_TABLE are string expressions, possibly containing (special) wildcard characters, and so must be quoted. This is shown in the following example statements:
CHANGE REPLICATION FILTER
 REPLICATE_WILD_DO_TABLE = ('db1.old%');

CHANGE REPLICATION FILTER
 REPLICATE_WILD_IGNORE_TABLE = ('db1.new%', 'db2.new%');
Values used with REPLICATE_REWRITE_DB represent pairs of database names; each such value must be enclosed in parentheses. The following statement rewrites statements occurring on database db1 on the source to database db2 on the replica:
CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB = ((db1, db2));
The statement just shown contains two sets of parentheses, one enclosing the pair of database names, and the other enclosing the entire list. This is perhaps more easily seen in the following example, which creates two rewrite-db rules, one rewriting database dbA to dbB, and one rewriting database dbC to dbD:
CHANGE REPLICATION FILTER
 REPLICATE_REWRITE_DB = ((dbA, dbB), (dbC, dbD));
The CHANGE REPLICATION FILTER statement replaces replication filtering rules only for the filter types and replication channels affected by the statement, and leaves other rules and channels unchanged. If you want to unset all filters of a given type, set the filter's value to an explicitly empty list, as shown in this example, which removes all existing REPLICATE_DO_DB and REPLICATE_IGNORE_DB rules:
CHANGE REPLICATION FILTER
 REPLICATE_DO_DB = (), REPLICATE_IGNORE_DB = ();
Setting a filter to empty in this way removes all existing rules, does not create any new ones, and does not restore any rules set at mysqld startup using --replicate-* options on the command line or in the configuration file.
The RESET REPLICA | SLAVE ALL statement removes channel specific replication filters that were set on channels deleted by the statement. When the deleted channel or channels are recreated, any global replication filters specified for the replica are copied to them, and no channel specific replication filters are applied.
[bookmark: _Toc57749747]MASTER_POS_WAIT() Statement
[bookmark: idm46251766345680]SELECT MASTER_POS_WAIT('source_log_file', source_log_pos [, timeout][, channel])
This is actually a function, not a statement. It is used to ensure that the replica has read and executed events up to a given position in the source's binary log.
[bookmark: _Toc57749748]RESET REPLICA | SLAVE Statement
[bookmark: idm46251766339328][bookmark: idm46251766338288]RESET {REPLICA | SLAVE} [ALL] [channel_option]

channel_option:
 FOR CHANNEL channel
RESET REPLICA | SLAVE makes the replica forget its position in the source's binary log. From MySQL 8.0.22, use RESET REPLICA in place of RESET SLAVE, which is deprecated from that release. In releases before MySQL 8.0.22, use RESET SLAVE.
This statement is meant to be used for a clean start; it clears the replication metadata repositories, deletes all the relay log files, and starts a new relay log file. It also resets to 0 the replication delay specified with the MASTER_DELAY option of CHANGE MASTER TO.
Note
All relay log files are deleted, even if they have not been completely executed by the replication SQL thread. (This is a condition likely to exist on a replica if you have issued a STOP REPLICA | SLAVE statement or if the replica is highly loaded.)
For a server where GTIDs are in use (gtid_mode is ON), issuing RESET REPLICA | SLAVE has no effect on the GTID execution history. The statement does not change the values of gtid_executed or gtid_purged, or the mysql.gtid_executed table. If you need to reset the GTID execution history, use RESET MASTER, even if the GTID-enabled server is a replica where binary logging is disabled.
RESET REPLICA | SLAVE requires the RELOAD privilege.
To use RESET REPLICA | SLAVE, the replication SQL thread and replication I/O thread must be stopped, so on a running replica use STOP REPLICA | SLAVE before issuing RESET REPLICA | SLAVE. To use RESET REPLICA | SLAVE on a Group Replication group member, the member status must be OFFLINE, meaning that the plugin is loaded but the member does not currently belong to any group. A group member can be taken offline by using a STOP GROUP REPLICATION statement.
The optional FOR CHANNEL channel clause enables you to name which replication channel the statement applies to. Providing a FOR CHANNEL channel clause applies the RESET REPLICA | SLAVE statement to a specific replication channel. Combining a FOR CHANNEL channel clause with the ALL option deletes the specified channel. If no channel is named and no extra channels exist, the statement applies to the default channel. Issuing a RESET REPLICA | SLAVE ALL statement without a FOR CHANNEL channel clause when multiple replication channels exist deletes all replication channels and recreates only the default channel.
RESET REPLICA | SLAVE does not change any replication connection parameters, which include the source's host name and port, the replication user account and its password, the PRIVILEGE_CHECKS_USER account, the REQUIRE_ROW_FORMAT option, and the REQUIRE_TABLE_PRIMARY_KEY_CHECK option. If you want to change any of the replication connection parameters, you can do this using a CHANGE MASTER TO statement after the server start. If you want to remove all of the replication connection parameters, use RESET REPLICA | SLAVE ALL. RESET REPLICA | SLAVE ALL also clears the IGNORE_SERVER_IDS list set by CHANGE MASTER TO. When you have used RESET REPLICA | SLAVE ALL, if you want to use the instance as a replica again, you need to issue a CHANGE MASTER TO statement after the server start to specify new connection parameters.
In the event of an unexpected server exit or deliberate restart after issuing RESET REPLICA | SLAVE but before issuing START REPLICA | SLAVE, retention of the replication connection parameters depends on the repository used for the replication metadata:
· When master_info_repository=TABLE and relay_log_info_repository=TABLE are set on the server (which are the default settings from MySQL 8.0), replication connection parameters are preserved in the crash-safe InnoDB tables mysql.slave_master_info and mysql.slave_relay_log_info as part of the RESET REPLICA | SLAVE operation. They are also retained in memory. In the event of an unexpected server exit or deliberate restart after issuing RESET REPLICA | SLAVE but before issuing START REPLICA | SLAVE, the replication connection parameters are retrieved from the tables and reapplied to the channel. This situation applies from MySQL 8.0.13 for the source metadata repository, and from MySQL 8.0.19 for the replica metadata repository.
· If master_info_repository=FILE and relay_log_info_repository=FILE are set on the server, or the MySQL Server release is earlier than those specified above, replication connection parameters are only retained in memory. If the replica mysqld is restarted immediately after issuing RESET REPLICA | SLAVE due to an unexpected server exit or deliberate restart, the connection parameters are lost. In that case, you must issue a CHANGE MASTER TO statement after the server start to respecify the connection parameters before issuing START REPLICA | SLAVE. Note that the FILE setting for these options is deprecated; expect it to be removed in a future release.
RESET REPLICA | SLAVE does not change any replication filter settings (such as --replicate-ignore-table) for channels affected by the statement. However, RESET REPLICA | SLAVE ALL removes the replication filters that were set on the channels deleted by the statement. When the deleted channel or channels are recreated, any global replication filters specified for the replica are copied to them, and no channel specific replication filters are applied.
RESET REPLICA | SLAVE causes an implicit commit of an ongoing transaction.
If the replication SQL thread was in the middle of replicating temporary tables when it was stopped, and RESET REPLICA | SLAVE is issued, these replicated temporary tables are deleted on the replica.
RESET REPLICA | SLAVE does not reset the heartbeat period or SSL_VERIFY_SERVER_CERT.
Note
When used on an NDB Cluster replica SQL node, RESET REPLICA | SLAVE clears the mysql.ndb_apply_status table. You should keep in mind when using this statement that ndb_apply_status uses the NDB storage engine and so is shared by all SQL nodes attached to the cluster.
You can override this behavior by issuing SET GLOBAL @@ndb_clear_apply_status=OFF prior to executing RESET REPLICA | SLAVE, which keeps the replica from purging the ndb_apply_status table in such cases.
[bookmark: _Toc57749749]RESET SLAVE | REPLICA Statement
[bookmark: idm46251766247328][bookmark: idm46251766246288]RESET {SLAVE | REPLICA} [ALL] [channel_option]

channel_option:
 FOR CHANNEL channel
Makes the replica forget its position in the source's binary log. From MySQL 8.0.22, RESET SLAVE is deprecated and the alias RESET REPLICA should be used instead. In releases before MySQL 8.0.22, use RESET SLAVE. The statement works in the same way as before, only the terminology used for the statement and its output has changed. Both versions of the statement update the same status variables when used. Please see the documentation for RESET REPLICA for a description of the statement.
[bookmark: _Toc57749750]START REPLICA | SLAVE Statement
[bookmark: idm46251766232816]START {REPLICA | SLAVE} [thread_types] [until_option] [connection_options] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type:
 IO_THREAD | SQL_THREAD

until_option:
 UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set
 | MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
 | RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
 | SQL_AFTER_MTS_GAPS }

connection_options:
 [USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']

channel_option:
 FOR CHANNEL channel

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9,A-F]

interval:
 n[-n]

 (n >= 1)
START REPLICA | SLAVE starts one or both of the replication threads. From MySQL 8.0.22, use START REPLICA in place of START SLAVE, which is deprecated from that release. In releases before MySQL 8.0.22, use START SLAVE.
START REPLICA | SLAVE with no thread_type options starts both of the replication threads. The replication I/O thread reads events from the source server and stores them in the relay log. The replication SQL thread reads events from the relay log and executes them. START REPLICA | SLAVE requires the REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER privilege).
If START REPLICA | SLAVE succeeds in starting the replication threads, it returns without any error. However, even in that case, it might be that the replication threads start and then later stop (for example, because they do not manage to connect to the source or read its binary log, or some other problem). START REPLICA | SLAVE does not warn you about this. You must check the replica's error log for error messages generated by the replication threads, or check that they are running satisfactorily with SHOW REPLICA | SLAVE STATUS.
START REPLICA | SLAVE causes an implicit commit of an ongoing transaction.
gtid_next must be set to AUTOMATIC before issuing this statement.
The optional FOR CHANNEL channel clause enables you to name which replication channel the statement applies to. Providing a FOR CHANNEL channel clause applies the START REPLICA | SLAVE statement to a specific replication channel. If no clause is named and no extra channels exist, the statement applies to the default channel. If a START REPLICA | SLAVE statement does not have a channel defined when using multiple channels, this statement starts the specified threads for all channels. This statement is disallowed for the group_replication_recovery channel.
You can add IO_THREAD and SQL_THREAD options to the statement to name which of the threads to start. Note that the Group Replication applier channel (group_replication_applier) has no I/O thread, only an SQL thread. Specifying the IO_THREAD or SQL_THREAD options when you start this channel has no benefit.
START REPLICA | SLAVE supports pluggable user-password authentication with the USER, PASSWORD, DEFAULT_AUTH and PLUGIN_DIR options, as described in the following list:
· USER: User name. Cannot be set to an empty or null string, or left unset if PASSWORD is used.
· PASSWORD: Password.
· DEFAULT_AUTH: Name of plugin; default is MySQL native authentication.
· PLUGIN_DIR: Location of plugin.
You cannot use the SQL_THREAD option when specifying any of USER, PASSWORD, DEFAULT_AUTH, or PLUGIN_DIR, unless the IO_THREAD option is also provided.
If an insecure connection is used with any these options, the server issues the warning Sending passwords in plain text without SSL/TLS is extremely insecure.
START REPLICA | SLAVE ... UNTIL supports two additional options for use with global transaction identifiers (GTIDs) . Each of these takes a set of one or more global transaction identifiers gtid_set as an argument (see GTID Sets, for more information).
When no thread_type is specified, START REPLICA | SLAVE UNTIL SQL_BEFORE_GTIDS causes the replication SQL thread to process transactions until it has reached the first transaction whose GTID is listed in the gtid_set. START REPLICA | SLAVE UNTIL SQL_AFTER_GTIDS causes the replication threads to process all transactions until the last transaction in the gtid_set has been processed by both threads. In other words, START REPLICA | SLAVE UNTIL SQL_BEFORE_GTIDS causes the replication SQL thread to process all transactions occurring before the first GTID in the gtid_set is reached, and START REPLICA | SLAVE UNTIL SQL_AFTER_GTIDS causes the replication threads to handle all transactions, including those whose GTIDs are found in gtid_set, until each has encountered a transaction whose GTID is not part of the set. SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS each support the SQL_THREAD and IO_THREAD options, although using IO_THREAD with them currently has no effect.
For example, START REPLICA | SLAVE SQL_THREAD UNTIL SQL_BEFORE_GTIDS = 3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56 causes the replication SQL thread to process all transactions originating from the source whose server_uuid is 3E11FA47-71CA-11E1-9E33-C80AA9429562 until it encounters the transaction having sequence number 11; it then stops without processing this transaction. In other words, all transactions up to and including the transaction with sequence number 10 are processed. Executing START REPLICA | SLAVE SQL_THREAD UNTIL SQL_AFTER_GTIDS = 3E11FA47-71CA-11E1-9E33-C80AA9429562:11-56, on the other hand, would cause the replication SQL thread to obtain all transactions just mentioned from the source, including all of the transactions having the sequence numbers 11 through 56, and then to stop without processing any additional transactions; that is, the transaction having sequence number 56 would be the last transaction fetched by the replication SQL thread.
When using a multithreaded replica with slave_preserve_commit_order=0 set, there is a chance of gaps in the sequence of transactions that have been executed from the relay log in the following cases:
· killing the coordinator thread
· after an error occurs in the applier threads
· mysqld shuts down unexpectedly
Use the START REPLICA | SLAVE UNTIL SQL_AFTER_MTS_GAPS statement to cause a multithreaded replica's worker threads to only run until no more gaps are found in the relay log, and then to stop. This statement can take an SQL_THREAD option, but the effects of the statement remain unchanged. It has no effect on the replication I/O thread (and cannot be used with the IO_THREAD option).
Issuing START REPLICA | SLAVE on a multithreaded replica with gaps in the sequence of transactions executed from the relay log generates a warning. In such a situation, the solution is to use START REPLICA | SLAVE UNTIL SQL_AFTER_MTS_GAPS, then issue RESET REPLICA | SLAVE to remove any remaining relay logs.
To change a failed multithreaded replica to single-threaded mode, you can issue the following series of statements, in the order shown:
START {REPLICA | SLAVE} UNTIL SQL_AFTER_MTS_GAPS;

SET @@GLOBAL.slave_parallel_workers = 0;

START {REPLICA | SLAVE} SQL_THREAD;
Note
It is possible to view the entire text of a running START REPLICA | SLAVE statement, including any USER or PASSWORD values used, in the output of SHOW PROCESSLIST. This is also true for the text of a running CHANGE MASTER TO statement, including any values it employs for MASTER_USER or MASTER_PASSWORD.
START REPLICA | SLAVE sends an acknowledgment to the user after both the replication I/O thread and the replication SQL thread have started. However, the replication I/O thread may not yet have connected. For this reason, a successful START REPLICA | SLAVE causes SHOW REPLICA | SLAVE STATUS to show Replica_SQL_Running=Yes, but this does not guarantee that Replica_IO_Running=Yes (because Replica_IO_Running=Yes only if the I/O thread is running and connected).
An UNTIL clause (until_option, in the preceding grammar) may be added to specify that the replica should start and run until the replication SQL thread reaches a given point in the source's binary log, specified by the MASTER_LOG_POS and MASTER_LOG_FILE options, or a given point in the replica's relay log, indicated with the RELAY_LOG_POS and RELAY_LOG_FILE options. For compressed transaction payloads, the position must be based on the compressed Transaction_payload_event. When the SQL thread reaches the point specified, it stops. If the SQL_THREAD option is specified in the statement, it starts only the SQL thread. Otherwise, it starts both replication threads. If the SQL thread is running, the UNTIL clause is ignored and a warning is issued. You cannot use an UNTIL clause with the IO_THREAD option.
It is also possible with START REPLICA | SLAVE UNTIL to specify a stop point relative to a given GTID or set of GTIDs using one of the options SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS, as explained previously in this section. When using one of these options, you can specify SQL_THREAD, IO_THREAD, both of these, or neither of them. If you specify only SQL_THREAD, then only the replication SQL thread is affected by the statement; if only IO_THREAD is used, then only the replication I/O thread is affected. If both SQL_THREAD and IO_THREAD are used, or if neither of them is used, then both the SQL and I/O threads are affected by the statement.
For an UNTIL clause, you must specify any one of the following:
· Both a log file name and a position in that file
· Either of SQL_BEFORE_GTIDS or SQL_AFTER_GTIDS
· SQL_AFTER_MTS_GAPS
Do not mix source and relay log options. Do not mix log file options with GTID options.
The UNTIL clause is not supported for multithreaded replicas except when also using SQL_AFTER_MTS_GAPS. If UNTIL is used on a multithreaded replica without SQL_AFTER_MTS_GAPS, the replica operates in single-threaded (sequential) mode for replication until the point specified by the UNTIL clause is reached.
Any UNTIL condition is reset by a subsequent STOP REPLICA | SLAVE statement, a START REPLICA | SLAVE statement that includes no UNTIL clause, or a server restart.
When specifying a log file and position, you can use the IO_THREAD option with START REPLICA | SLAVE ... UNTIL even though only the SQL thread is affected by this statement. The IO_THREAD option is ignored in such cases. The preceding restriction does not apply when using one of the GTID options (SQL_BEFORE_GTIDS and SQL_AFTER_GTIDS); the GTID options support both SQL_THREAD and IO_THREAD, as explained previously in this section.
The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just before the point where you want to avoid having the replica replicate an event. For example, if an unwise DROP TABLE statement was executed on the source, you can use UNTIL to tell the replica to execute up to that point but no farther. To find what the event is, use mysqlbinlog with the source's binary log or the replica's relay log, or by using a SHOW BINLOG EVENTS statement.
If you are using UNTIL to have the replica process replicated queries in sections, it is recommended that you start the replica with the --skip-slave-start option to prevent the SQL thread from running when the replica server starts. It is probably best to use this option in an option file rather than on the command line, so that an unexpected server restart does not cause it to be forgotten.
The SHOW REPLICA | SLAVE STATUS statement includes output fields that display the current values of the UNTIL condition.
[bookmark: _Toc57749751]START SLAVE | REPLICA Statement
[bookmark: idm46251766066736]START {SLAVE | REPLICA} [thread_types] [until_option] [connection_options] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type:
 IO_THREAD | SQL_THREAD

until_option:
 UNTIL { {SQL_BEFORE_GTIDS | SQL_AFTER_GTIDS} = gtid_set
 | MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
 | RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos
 | SQL_AFTER_MTS_GAPS }

connection_options:
 [USER='user_name'] [PASSWORD='user_pass'] [DEFAULT_AUTH='plugin_name'] [PLUGIN_DIR='plugin_dir']

channel_option:
 FOR CHANNEL channel

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9,A-F]

interval:
 n[-n]

 (n >= 1)
Starts the replication threads. From MySQL 8.0.22, START SLAVE is deprecated and the alias START REPLICA should be used instead. The statement works in the same way as before, only the terminology used for the statement and its output has changed. Both versions of the statement update the same status variables when used. Please see the documentation for START REPLICA for a description of the statement.
[bookmark: _Toc57749752]STOP REPLICA | SLAVE Statement
[bookmark: idm46251766038752]STOP {REPLICA | SLAVE} [thread_types] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

channel_option:
 FOR CHANNEL channel
Stops the replication threads. From MySQL 8.0.22, use STOP REPLICA in place of STOP SLAVE, which is now deprecated. In releases before MySQL 8.0.22, use STOP SLAVE.
STOP REPLICA | SLAVE requires the REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER privilege). Recommended best practice is to execute STOP REPLICA | SLAVE on the replica before stopping the replica server.
Like START REPLICA | SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to name the replication thread or threads to be stopped. Note that the Group Replication applier channel (group_replication_applier) has no replication I/O thread, only a replication SQL thread. Using the SQL_THREAD option therefore stops this channel completely.
STOP REPLICA | SLAVE causes an implicit commit of an ongoing transaction.
gtid_next must be set to AUTOMATIC before issuing this statement.
You can control how long STOP REPLICA | SLAVE waits before timing out by setting the rpl_stop_slave_timeout system variable. This can be used to avoid deadlocks between STOP REPLICA | SLAVE and other SQL statements using different client connections to the replica. When the timeout value is reached, the issuing client returns an error message and stops waiting, but the STOP REPLICA | SLAVE instruction remains in effect. Once the replication threads are no longer busy, the STOP REPLICA | SLAVE statement is executed and the replica stops.
Some CHANGE MASTER TO statements are allowed while the replica is running, depending on the states of the replication threads. However, using STOP REPLICA | SLAVE prior to executing CHANGE MASTER TO in such cases is still supported.
The optional FOR CHANNEL channel clause enables you to name which replication channel the statement applies to. Providing a FOR CHANNEL channel clause applies the STOP REPLICA | SLAVE statement to a specific replication channel. If no channel is named and no extra channels exist, the statement applies to the default channel. If a STOP REPLICA | SLAVE statement does not name a channel when using multiple channels, this statement stops the specified threads for all channels. This statement cannot be used with the group_replication_recovery channel..
When the replica is multithreaded (slave_parallel_workers is a nonzero value), any gaps in the sequence of transactions executed from the relay log are closed as part of stopping the worker threads. If the replica is stopped unexpectedly (for example due to an error in a worker thread, or another thread issuing KILL) while a STOP REPLICA | SLAVE statement is executing, the sequence of executed transactions from the relay log may become inconsistent.
When the source is using the row-based binary logging format, you should execute STOP REPLICA | SLAVE or STOP REPLICA | SLAVE SQL_THREAD on the replica prior to shutting down the replica server if you are replicating any tables that use a nontransactional storage engine. If the current replication event group has modified one or more nontransactional tables, STOP REPLICA | SLAVE waits for up to 60 seconds for the event group to complete, unless you issue a KILL QUERY or KILL CONNECTION statement for the replication SQL thread. If the event group remains incomplete after the timeout, an error message is logged.
When the source is using the statement-based binary logging format, changing the source while it has open temporary tables is potentially unsafe. This is one of the reasons why statement-based replication of temporary tables is not recommended. You can find out whether there are any temporary tables on the replica by checking the value of Slave_open_temp_tables; when using statement-based replication, this value should be 0 before executing CHANGE MASTER TO. If there are any temporary tables open on the replica, issuing a CHANGE MASTER TO statement after issuing a STOP REPLICA | SLAVE causes an ER_WARN_OPEN_TEMP_TABLES_MUST_BE_ZERO warning.

[bookmark: _Toc57749753]STOP SLAVE | REPLICA Statement
[bookmark: idm46251765977264]STOP {SLAVE | REPLICA} [thread_types] [channel_option]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

channel_option:
 FOR CHANNEL channel
Stops the replication threads. From MySQL 8.0.22, STOP SLAVE is deprecated and the alias STOP REPLICA should be used instead. The statement works in the same way as before, only the terminology used for the statement and its output has changed. Both versions of the statement update the same status variables when used. Please see the documentation for STOP REPLICA for a description of the statement.
[bookmark: _Toc57749754]Functions which Configure the Source List
The following functions, which are available from MySQL 8.0.22, enable you to add and remove replication source servers from the source list for a replication channel. The asynchronous connection failover mechanism automatically establishes an asynchronous (source to replica) replication connection to a new source from the appropriate list after the existing connection from the replica to its source fails.
The source lists are stored in the mysql.replication_asynchronous_connection_failover table, and can be viewed in the Performance Schema table replication_asynchronous_connection_failover.
· asynchronous_connection_failover_add_source()
[bookmark: idm46251765955600][bookmark: idm46251765954496]Add configuration information for a replication source server to the source list for a replication channel.
Syntax:
asynchronous_connection_failover_add_source(channel, host, port, network_namespace, weight)
Arguments:
· channel: The replication channel for which this replication source server is part of the source list.
· host: The host name for this replication source server.
· port: The port number for this replication source server.
· network_namespace: The network namespace for this replication source server. If you specify an empty string, connections use the default (global) network namespace.
· weight: The priority of this replication source server in the replication channel's source list. The priority is from 1 to 100, with 100 being the highest, and 50 being the default. When the asynchronous connection failover mechanism activates, the source with the highest priority setting among the alternative sources listed in the source list for the channel is chosen for the first connection attempt. If this attempt does not work, the replica tries with all the listed sources in descending order of priority, then starts again from the highest priority source. If multiple sources have the same priority, the replica orders them randomly.
Return value:
A string containing the result of the operation, for example whether it was successful or not.
Example:
SELECT asynchronous_connection_failover_add_source('channel2', '127.0.0.1', 3310, '', 80);
+---+
| asynchronous_connection_failover_add_source('channel2', '127.0.0.1', 3310, '', 80) |
+---+
| Source configuration details successfully inserted. |
+---+
For more information, see Section 17.4.9, “Switching Sources with Asynchronous Connection Failover”.
· asynchronous_connection_failover_delete_source()
[bookmark: idm46251765934432][bookmark: idm46251765933328]Remove configuration information for a replication source server from the source list for a replication channel.
Syntax:
asynchronous_connection_failover_delete_source(channel, host, port, network_namespace)
Arguments:
· channel: The replication channel for which this replication source server was part of the source list.
· host: The host name for this replication source server.
· port: The port number for this replication source server.
· network_namespace: The network namespace for this replication source server. An empty string means connections use the default (global) network namespace.
Return value:
A string containing the result of the operation, for example whether it was successful or not.
Example:
SELECT asynchronous_connection_failover_delete_source('channel2', '127.0.0.1', 3310, '');
+--+
| asynchronous_connection_failover_delete_source('channel2', '127.0.0.1', 3310, '') |
+--+
| Source configuration details successfully deleted. |
+--+
For more information, see Section 17.4.9, “Switching Sources with Asynchronous Connection Failover”.
[bookmark: _Toc57749755]SQL Statements for Controlling Group Replication
[bookmark: idm46251765915648][bookmark: idm46251765914160][bookmark: idm46251765912672]This section provides information about the statements used for controlling group replication.
[bookmark: _Toc57749756]START GROUP_REPLICATION Statement
[bookmark: idm46251765909568] START GROUP_REPLICATION
 [USER='user_name']
 [, PASSWORD='user_pass']
 [, DEFAULT_AUTH='plugin_name']
Starts group replication. This statement requires the GROUP_REPLICATION_ADMIN privilege (or the deprecated SUPER privilege). If super_read_only=ON is set and the member should join as a primary, super_read_only is set to OFF once Group Replication successfully starts.
From MySQL 8.0.21, you can specify user credentials for distributed recovery on the START GROUP_REPLICATION statement using the USER, PASSWORD, and DEFAULT_AUTH options, as follows:
· USER: The replication user for distributed recovery. You cannot specify an empty or null string, or omit the USER option if PASSWORD is specified.
· PASSWORD: The password for the replication user account. The password cannot be encrypted, but it is masked in the query log.
· DEFAULT_AUTH: The name of the authentication plugin used for the replication user account. If you do not specify this option, MySQL native authentication (the mysql_native_password plugin) is assumed. This option acts as a hint to the server, and the donor for distributed recovery overrides it if a different plugin is associated with the user account on that server. The authentication plugin used by default when you create user accounts in MySQL 8 is the caching SHA-2 authentication plugin (caching_sha2_password).
These credentials are used for distributed recovery on the group_replication_recovery channel. When you specify user credentials on START GROUP_REPLICATION, the credentials are saved in memory only, and are removed by a STOP GROUP_REPLICATION statement or server shutdown. You must issue a START GROUP_REPLICATION statement to provide the credentials again. This method is therefore not compatible with starting Group Replication automatically on server start, as specified by the group_replication_start_on_boot system variable.
User credentials specified on START GROUP_REPLICATION take precedence over any user credentials set for the group_replication_recovery channel using a CHANGE MASTER TO statement. Note that user credentials set using CHANGE MASTER TO are stored in the replication metadata repositories, and are used when START GROUP_REPLICATION is specified without user credentials, including automatic starts if the group_replication_start_on_boot system variable is set to ON. To gain the security benefits of specifying user credentials on START GROUP_REPLICATION, ensure that group_replication_start_on_boot is set to OFF (the default is ON), and clear any user credentials previously set for the group_replication_recovery channel, following the instructions.
[bookmark: _Toc57749757]STOP GROUP_REPLICATION Statement
[bookmark: idm46251765867600]STOP GROUP_REPLICATION
Stops Group Replication. This statement requires the GROUP_REPLICATION_ADMIN privilege (or the deprecated SUPER privilege). As soon as you issue STOP GROUP_REPLICATION the member is set to super_read_only=ON, which ensures that no writes can be made to the member while Group Replication stops. Any other replication channels running on the member are also stopped. Any user credentials that you specified on the START GROUP_REPLICATION statement when starting Group Replication on this member are removed from memory, and must be supplied when you start Group Replication again.
Warning
Use this statement with extreme caution because it removes the server instance from the group, meaning it is no longer protected by Group Replication's consistency guarantee mechanisms. To be completely safe, ensure that your applications can no longer connect to the instance before issuing this statement to avoid any chance of stale reads.
[bookmark: _Toc57749758] Function which Configures Group Replication Primary
The following function enables you to configure which member of a single-primary replication group is the primary.
· group_replication_set_as_primary()
[bookmark: idm46251765852784][bookmark: idm46251765851696]Appoints a specific member of the group as the new primary, overriding any election process. Pass in member_uuid which is the server_uuid of the member that you want to become the new primary. Must be issued on a member of a replication group running in single-primary mode.
Syntax:
STRING group_replication_set_as_primary(member_uuid)
Return value:
A string containing the result of the operation, for example whether it was successful or not.
Example:
SELECT group_replication_set_as_primary(member_uuid)
For more information, see Section 18.4.1.1, “Changing a Group's Primary Member”
[bookmark: _Toc57749759] Functions which Configure the Group Replication Mode
The following functions enable you to control the mode which a replication group is running in, either single-primary or multi-primary mode.
· group_replication_switch_to_single_primary_mode()
[bookmark: idm46251765836176][bookmark: idm46251765835072]Changes a group running in multi-primary mode to single-primary mode, without the need to stop Group Replication. Must be issued on a member of a replication group running in multi-primary mode. When you change to single-primary mode, strict consistency checks are also disabled on all group members, as required in single-primary mode (group_replication_enforce_update_everywhere_checks=OFF).
Syntax:
STRING group_replication_switch_to_single_primary_mode([str])
Arguments:
· str: A string containing the UUID of a member of the group which should become the new single primary. Other members of the group become secondaries.
Return value:
A string containing the result of the operation, for example whether it was successful or not.
Example:
SELECT group_replication_switch_to_single_primary_mode(member_uuid);
· group_replication_switch_to_multi_primary_mode()
[bookmark: idm46251765820192][bookmark: idm46251765819088]Changes a group running in single-primary mode to multi-primary mode. Must be issued on a member of a replication group running in single-primary mode.
Syntax:
STRING group_replication_switch_to_multi_primary_mode()
This function has no parameters.
Return value:
A string containing the result of the operation, for example whether it was successful or not.
Example:
SELECT group_replication_switch_to_multi_primary_mode()
All members which belong to the group become primaries.
[bookmark: _Toc57749760]Functions to Inspect and Configure the Maximum Consensus Instances of a Group
The following functions enable you to inspect and configure the maximum number of consensus instances that a group can execute in parallel.
· group_replication_get_write_concurrency()
[bookmark: idm46251765806208][bookmark: idm46251765805104]Check the maximum number of consensus instances that a group can execute in parallel.
Syntax:
INT group_replication_get_write_concurrency()
This function has no parameters.
Return value:
The maximum number of consensus instances currently set for the group.
Example:
SELECT group_replication_get_write_concurrency()
· group_replication_set_write_concurrency()
[bookmark: idm46251765794944][bookmark: idm46251765793840]Configures the maximum number of consensus instances that a group can execute in parallel. The GROUP_REPLICATION_ADMIN privilege is required to use this UDF.
Syntax:
STRING group_replication_set_write_concurrency(instances)
Arguments:
· members: Sets the maximum number of consensus instances that a group can execute in parallel. Default value is 10, valid values are integers in the range of 10 to 200.
Return value:
Any resulting error as a string.
Example:
SELECT group_replication_set_write_concurrency(instances);
[bookmark: _Toc57749761]Version
The following functions enable you to inspect and configure the Group Replication communication protocol version that is used by a replication group.
· group_replication_get_communication_protocol()
[bookmark: idm46251765777072][bookmark: idm46251765775968]Inspect the Group Replication communication protocol version that is currently in use for a group.
Syntax:
STRING group_replication_get_communication_protocol()
This function has no parameters.
Return value:
The oldest MySQL Server version that can join this group and use the group's communication protocol. Versions from MySQL 5.7.14 allow compression of messages, and versions from MySQL 8.0.16 also allow fragmentation of messages. Note that the group_replication_get_communication_protocol() UDF returns the minimum MySQL version that the group supports, which might differ from the version number that was passed to the group_replication_set_communication_protocol() UDF, and from the MySQL Server version that is installed on the member where you use the UDF.
If the protocol cannot be inspected because this server instance does not belong to a replication group, an error is returned as a string.
Example:
SELECT group_replication_get_communication_protocol();
+--+
| group_replication_get_communication_protocol() |
+--+
| 8.0.16 |
+--+
· group_replication_set_communication_protocol()
[bookmark: idm46251765761248][bookmark: idm46251765760144]Downgrade the Group Replication communication protocol version of a group so that members at earlier releases can join, or upgrade the Group Replication communication protocol version of a group after upgrading MySQL Server on all members. The GROUP_REPLICATION_ADMIN privilege is required to use this UDF, and all existing group members must be online when you issue the statement, with no loss of majority.
Note
For MySQL InnoDB cluster, the communication protocol version is managed automatically whenever the cluster topology is changed using AdminAPI operations. You do not have to use these UDFs yourself for an InnoDB cluster.
Syntax:
STRING group_replication_set_communication_protocol(version)
Arguments:
· version: For a downgrade, specify the MySQL Server version of the prospective group member that has the oldest installed server version. In this case, the command makes the group fall back to a communication protocol compatible with that server version if possible. The minimum server version that you can specify is MySQL 5.7.14. For an upgrade, specify the new MySQL Server version to which the existing group members have been upgraded.
Return value:
A string containing the result of the operation, for example whether it was successful or not.
Example:
[bookmark: _GoBack]SELECT group_replication_set_communication_protocol("5.7.25");
